
Package: baggr (via r-universe)
August 27, 2024

Type Package

Title Bayesian Aggregate Treatment Effects

Version 0.7.8

Maintainer Witold Wiecek <witold.wiecek@gmail.com>

Description Running and comparing meta-analyses of data with
hierarchical Bayesian models in Stan, including convenience
functions for formatting data, plotting and pooling measures
specific to meta-analysis. This implements many models from
Meager (2019) <doi:10.1257/app.20170299>.

License GPL (>=3)

Encoding UTF-8

LazyData true

Biarch true

Depends R (>= 3.5.0), Rcpp (>= 0.12.17)

Imports rstan (>= 2.26.0), rstantools (>= 2.1.1), bayesplot, crayon,
forestplot, ggplot2, ggplotify, ggrepel, gridExtra, utils,
stats, testthat, methods

LinkingTo StanHeaders (>= 2.26.0), rstan (>= 2.26.0), BH (>=
1.66.0-1), Rcpp (>= 0.12.17), RcppParallel (>= 5.0.1),
RcppEigen (>= 0.3.3.4.0)

SystemRequirements GNU make

NeedsCompilation yes

RoxygenNote 7.2.3

Roxygen list(markdown = TRUE)

Suggests knitr, covr, rmarkdown

VignetteBuilder knitr

URL https://github.com/wwiecek/baggr

BugReports https://github.com/wwiecek/baggr/issues

Language en-GB

1

https://doi.org/10.1257/app.20170299
https://github.com/wwiecek/baggr
https://github.com/wwiecek/baggr/issues

2 Contents

Repository https://wwiecek.r-universe.dev

RemoteUrl https://github.com/wwiecek/baggr

RemoteRef HEAD

RemoteSha 98e261de4ba2f141555cf52ed234bed500918db5

Contents
baggr-package . 3
add_color_to_plot . 3
baggr . 4
baggr_compare . 8
baggr_plot . 10
baggr_theme_set . 12
binary_to_individual . 13
bubble . 14
chicks . 15
convert_inputs . 16
data_spike . 17
effect_draw . 17
effect_plot . 19
fixed_effects . 20
forest_plot . 21
get_order . 22
group_effects . 22
is.baggr_cv . 24
labbe . 24
loocv . 25
loo_compare . 26
microcredit . 27
microcredit_simplified . 28
mint . 29
mutau_cor . 29
plot.baggr . 30
plot.baggr_compare . 30
plot.baggr_cv . 32
plot_quantiles . 32
pooling . 33
prepare_ma . 35
prepare_prior . 38
print.baggr . 39
print.baggr_compare . 39
print.baggr_cv . 40
print.compare_baggr_cv . 40
print_dist . 41
priors . 41
random_effects . 43
schools . 43

baggr-package 3

set_prior_val . 44
single_comp_plot . 44
treatment_effect . 45
yusuf . 46

Index 48

baggr-package baggr - a package for Bayesian meta-analysis

Description

This is baggr (pronounced as bagger or badger), a Bayesian meta-analysis package for R that uses
Stan to fit the models. Baggr is intended to be user-friendly and transparent so that it’s easier to
understand the models you are building and criticise them.

Details

Baggr package provides a suite of models that work with both summary data and full data sets,
to synthesise evidence collected from different groups, contexts or time periods. The baggr com-
mand automatically detects the data type and, by default, fits a partial pooling model (which you
may know as random effects models) with weakly informative priors by calling Stan to carry out
Bayesian inference. Modelling of variances or quantiles, standardisation and transformation of data
are also possible.

Getting help

This is only a simple package help file. For documentation of the main function for conducting
analyses see baggr. For description of models, data types and priors available in the package, try
the built-in vignette (vignette("baggr")).

References

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2.
https://mc-stan.org

add_color_to_plot Add colors to baggr plots

Description

Add colors to baggr plots

Usage

add_color_to_plot(p, what)

https://mc-stan.org/
https://stats.stackexchange.com/questions/4700/what-is-the-difference-between-fixed-effect-random-effect-and-mixed-effect-mode
https://mc-stan.org/

4 baggr

Arguments

p A ggplot object to add colors to

what A named vector, e.g. c(Hypermean = "red", "Group A" = "green").

baggr Bayesian aggregate treatment effects model

Description

Bayesian inference on parameters of an average treatment effects model that’s appropriate to the
supplied individual- or group-level data, using Hamiltonian Monte Carlo in Stan. (For overall
package help file see baggr-package)

Usage

baggr(
data,
model = NULL,
pooling = c("partial", "none", "full"),
effect_label = NULL,
covariates = c(),
prior_hypermean = NULL,
prior_hypersd = NULL,
prior_hypercor = NULL,
prior_beta = NULL,
prior_control = NULL,
prior_control_sd = NULL,
prior_sigma = NULL,
prior = NULL,
ppd = FALSE,
pooling_control = c("none", "partial", "remove"),
test_data = NULL,
quantiles = seq(0.05, 0.95, 0.1),
outcome = "outcome",
group = "group",
treatment = "treatment",
silent = FALSE,
warn = TRUE,
...

)

Arguments

data data frame with summary or individual level data to meta-analyse; see Details
section for how to format your data

baggr 5

model if NULL, detected automatically from input data otherwise choose from "rubin",
"mutau", "rubin_full", "quantiles" (see Details).

pooling Type of pooling; choose from "none", "partial" (default) and "full". If you
are not familiar with the terms, consult the vignette; "partial" can be understood
as random effects and "full" as fixed effects

effect_label How to label the effect(s). These labels are used in various print and plot outputs.
Will default to "mean" in most models, "log OR" in logistic model etc. If you
plan on comparing models (see baggr_compare), use the same labels.

covariates Character vector with column names in data. The corresponding columns are
used as covariates (fixed effects) in the meta-regression model (in case of aggre-
gate data). In the case of individual level data the model does not differentiate
between group-level variables (same values of the covariate for all rows related
to a given group) and individual-level covariates.

prior_hypermean

prior distribution for hypermean; you can use "plain text" notation like prior_hypermean=normal(0,100)
or uniform(-10, 10). See Details:Priors section below for more possible spec-
ifications. If unspecified, the priors will be derived automatically based on data
(and printed out in the console).

prior_hypersd prior for hyper-standard deviation, used by Rubin and "mutau" models; same
rules apply as for _hypermean;

prior_hypercor prior for hypercorrelation matrix, used by the "mutau" model

prior_beta prior for regression coefficients if covariates are specified; will default to ex-
perimental normal(0, 10^2) distribution

prior_control prior for the mean in the control arm (baseline), currently used in "logit" model
only; if pooling_control = "partial", the prior is hyperprior for all baselines,
if "none", then it is an independent prior for all baselines

prior_control_sd

prior for the SD in the control arm (baseline), currently used in "logit" model
only; this can only be used if pooling_control = "partial"

prior_sigma prior for error terms in linear regression models ("rubin_full" or "mutau_full")

prior alternative way to specify all priors as a named list with hypermean, hypersd,
hypercor, beta, analogous to prior_ arguments above, e.g. prior = list(hypermean
= normal(0,10), beta = uniform(-50, 50))

ppd logical; use prior predictive distribution? (p.p.d.) If ppd=TRUE, Stan model will
sample from the prior distribution(s) and ignore data in inference. However,
data argument might still be used to infer the correct model (if model=NULL)
and to set the default priors, therefore you must specify it.

pooling_control

Pooling for group-specific control mean terms in models using individual-level
data. Typically we use either "none" or "partial", but if you want to remove
the group-specific intercept altogether, set this to "remove".

test_data data for cross-validation; NULL for no validation, otherwise a data frame with
the same columns as data argument. See "Cross-validation" section below.

quantiles if model = "quantiles", a vector indicating which quantiles of data to use (with
values between 0 and 1)

6 baggr

outcome character; column name in (individual-level) data with outcome variable values

group character; column name in data with grouping factor; it’s necessary for individual-
level data, for summarised data it will be used as labels for groups when display-
ing results

treatment character; column name in (individual-level) data with treatment factor;

silent Whether to silence messages about prior settings and about other automatic be-
haviour.

warn print an additional warning if Rhat exceeds 1.05

... extra options passed to Stan function, e.g. control = list(adapt_delta =
0.99), number of iterations etc.

Details

Below we briefly discuss 1/ data preparation, 2/ choice of model, 3/ choice of priors. All three are
discussed in more depth in the package vignette, vignette("baggr").

Data. For aggregate data models you need a data frame with columns tau and se (Rubin model) or
tau, mu, se.tau, se.mu ("mu & tau" model). An additional column can be used to provide labels
for each group (by default column group is used if available, but this can be customised – see the
example below). For individual level data three columns are needed: outcome, treatment, group.
These are identified by using the outcome, treatment and group arguments.

Many data preparation steps can be done through a helper function prepare_ma. It can convert
individual to summary-level data, calculate odds/risk ratios (with/without corrections) in binary
data, standardise variables and more. Using it will automatically format data inputs to work with
baggr().

Models. Available models are:

• for the continuous variable means: "rubin" model for average treatment effect (using sum-
mary data), "mutau" version which takes into account means of control groups (also us-
ing summary data), "rubin_full", which is the same model as "rubin" but works with
individual-level data

• for continuous variable quantiles: ‘"quantiles"“ model (see Meager, 2019 in references)

• for mixture data: "sslab" (experimental)

• for binary data: "logit" model can be used on individual-level data; you can also analyse
continuous statistics such as log odds ratios and logs risk ratios using the models listed above;
see vignette("baggr_binary") for tutorial with examples

If no model is specified, the function tries to infer the appropriate model automatically. Additionally,
the user must specify type of pooling. The default is always partial pooling.

Covariates. Both aggregate and individual-level data can include extra columns, given by covariates
argument (specified as a character vector of column names) to be used in regression models. We
also refer to impact of these covariates as fixed effects.

Two types of covariates may be present in your data:

• In "rubin" and "mutau" models, covariates that change according to group unit. In that
case, the model accounting for the group covariates is a meta-regression model. It can be
modelled on summary-level data.

https://handbook-5-1.cochrane.org/chapter_9/9_6_4_meta_regression.htm

baggr 7

• In "logit" and "rubin_full" models, covariates that change according to individual unit.
Then, such a model is commonly referred to as a mixed model . It has to be fitted to individual-
level data. Note that meta-regression is a special case of a mixed model for individual-level
data.

Priors. It is optional to specify priors yourself, as the package will try propose an appropriate prior
for the input data if you do not pass a prior argument. To set the priors yourself, use prior_
arguments. For specifying many priors at once (or re-using between models), a single prior =
list(...) argument can be used instead. Meaning of the prior parameters may slightly change
from model to model. Details and examples are given in vignette("baggr"). Setting ppd=TRUE
can be used to obtain prior predictive distributions, which is useful for understanding the prior as-
sumptions, especially useful in conjunction with effect_plot. You can also baggr_compare different
priors by setting baggr_compare(..., compare="prior").

Cross-validation. When test_data are specified, an extra parameter, the log predictive density,
will be returned by the model. (The fitted model itself is the same regardless of whether there are
test_data.) To understand this parameter, see documentation of loocv, a function that can be used
to assess out of sample prediction of the model using all available data. If using individual-level data
model, test_data should only include treatment arms of the groups of interest. (This is because in
cross-validation we are not typically interested in the model’s ability to fit heterogeneity in control
arms, but only heterogeneity in treatment arms.) For using aggregate level data, there is no such
restriction.

Outputs. By default, some outputs are printed. There is also a plot method for baggr objects which
you can access via baggr_plot (or simply plot()). Other standard functions for working with baggr
object are

• treatment_effect for distribution of hyperparameters

• group_effects for distributions of group-specific parameters (alias: study_effects, we use the
two interchangeably)

• fixed_effects for coefficients in (meta-)regression

• effect_draw and effect_plot for posterior predictive distributions

• baggr_compare for comparing multiple baggr models

• loocv for cross-validation

Value

baggr class structure: a list including Stan model fit alongside input data, pooling metrics, various
model properties. If test data is used, mean value of -2*lpd is reported as mean_lpd

Examples

df_pooled <- data.frame("tau" = c(1, -1, .5, -.5, .7, -.7, 1.3, -1.3),
"se" = rep(1, 8),
"state" = datasets::state.name[1:8])

baggr(df_pooled) #baggr automatically detects the input data
same model, but with correct labels,
different pooling & passing some options to Stan
baggr(df_pooled, group = "state", pooling = "full", iter = 500)
model with non-default (and very informative) priors

https://stats.stackexchange.com/questions/4700/what-is-the-difference-between-fixed-effect-random-effect-and-mixed-effect-mode/252888

8 baggr_compare

baggr(df_pooled, prior_hypersd = normal(0, 2))

"mu & tau" model, using a built-in dataset
prepare_ma() can summarise individual-level data
ms <- microcredit_simplified
microcredit_summary_data <- prepare_ma(ms, outcome = "consumption")
baggr(microcredit_summary_data, model = "mutau",

iter = 500, #this is just for illustration -- don't set it this low normally!
pooling = "partial", prior_hypercor = lkj(1),
prior_hypersd = normal(0,10),
prior_hypermean = multinormal(c(0,0),matrix(c(10,3,3,10),2,2)))

baggr_compare (Run and) compare multiple baggr models

Description

Compare multiple baggr models by either providing multiple already existing models as (named)
arguments or passing parameters necessary to run a baggr model.

Usage

baggr_compare(
...,
what = "pooling",
compare = c("groups", "hyperpars", "effects"),
transform = NULL,
prob = 0.95,
plot = FALSE

)

Arguments

... Either some (at least 1) objects of class baggr (you should name your objects,
see the example below) or the same arguments you’d pass to baggr. In the latter
case you must specify what to compare.

what One of "pooling" (comparison between no, partial and full pooling) or "prior"
(comparison between prior and posterior predictive). If pre-existing baggr mod-
els are passed to ..., this argument is ignored.

compare When plotting, choose between comparison of "groups" (default), "hyperpars"
(to omit group-specific estimates) or (predicted) "effects". The "groups" op-
tion is not available when what = "prior".

baggr_compare 9

transform a function (e.g. exp(), log()) to apply to the the sample of group (and hyper, if
hyper=TRUE) effects before plotting; when working with effects that are on log
scale, exponent transform is used automatically, you can plot on log scale by
setting transform = identity

prob Width of uncertainty interval (defaults to 95%)

plot logical; calls plot.baggr_compare when running baggr_compare

Details

If you pass parameters to the function you must specify what kind of comparison you want, either
"pooling", which will run fully/partially/un-pooled models and then compare them, or "prior"
which will generate estimates without the data and compare them to the model with the full data.
For more details see baggr, specifically the ppd argument.

Value

an object of class baggr_compare

Author(s)

Witold Wiecek, Brice Green

See Also

plot.baggr_compare and print.baggr_compare for working with results of this function

Examples

Most basic comparison between no, partial and full pooling
(This will run the models)
run model with just prior and then full data for comparison
with the same arguments that are passed to baggr
prior_comparison <-

baggr_compare(schools,
model = 'rubin',
#this is just for illustration -- don't set it this low normally!
iter = 500,
prior_hypermean = normal(0, 3),
prior_hypersd = normal(0,2),
prior_hypercor = lkj(2),
what = "prior")

print the aggregated treatment effects
prior_comparison
plot the comparison of the two distributions
plot(prior_comparison)
Now compare different types of pooling for the same model
pooling_comparison <-

baggr_compare(schools,
model = 'rubin',
#this is just for illustration -- don't set it this low normally!
iter = 500,

10 baggr_plot

prior_hypermean = normal(0, 3),
prior_hypersd = normal(0,2),
prior_hypercor = lkj(2),
what = "pooling",
You can automatically plot:
plot = TRUE)

Compare existing models (you don't have to, but best to name them):
bg1 <- baggr(schools, pooling = "partial")
bg2 <- baggr(schools, pooling = "full")
baggr_compare("Partial pooling model" = bg1, "Full pooling" = bg2)

#' ...or simply draw from prior predictive dist (note ppd=T)
bg1 <- baggr(schools, ppd=TRUE)
bg2 <- baggr(schools, prior_hypermean = normal(0, 5), ppd=TRUE)
baggr_compare("Prior A, p.p.d."=bg1,

"Prior B p.p.d."=bg2,
compare = "effects")

Compare how posterior predictive effect varies with e.g. choice of prior
bg1 <- baggr(schools, prior_hypersd = uniform(0, 20))
bg2 <- baggr(schools, prior_hypersd = normal(0, 5))
baggr_compare("Uniform prior on SD"=bg1,

"Normal prior on SD"=bg2,
compare = "effects", plot = TRUE)

Models don't have to be identical. Compare different subsets of input data:
bg1_small <- baggr(schools[1:6,], pooling = "partial")
baggr_compare("8 schools model" = bg1, "First 6 schools" = bg1_small,

plot = TRUE)

baggr_plot Plotting method in baggr package

Description

Extracts study effects from the baggr model and plots them, possibly next to the hypereffect esti-
mate.

Usage

baggr_plot(
bg,
hyper = FALSE,
style = c("intervals", "areas", "forest_plot"),
transform = NULL,
prob = 0.5,
prob_outer = 0.95,
vline = TRUE,

baggr_plot 11

order = TRUE,
values_outer = TRUE,
values_size = 4,
values_digits = 1,
...

)

Arguments

bg object of class baggr

hyper logical; show hypereffect as the last row of the plot? alternatively you can pass
colour for the hypermean row, e.g. hyper = "red"

style "forest_plot" imitates the visual style of forest plots and also prints means
and intervals next to each row; "intervals" (default) or "areas" use package
bayesplot styles

transform a function (e.g. exp(), log()) to apply to the values of group (and hyper, if
hyper=TRUE) effects before plotting; when working with effects that are on log
scale, exponent transform is used automatically, you can plot on log scale by
setting transform = identity

prob Probability mass for the inner interval in visualisation

prob_outer Probability mass for the outer interval in visualisation

vline logical; show vertical line through 0 in the plot?

order logical; sort groups by magnitude of treatment effect?

values_outer logical; use the interval corresponding to prob_outer when style = "forest_plot"?
if not, the "inner" interval (prob) is used

values_size size of the text values in the plot when style = "forest_plot"

values_digits number of significant digits to use when style = "forest_plot"

... extra arguments to pass to the bayesplot functions

Value

ggplot2 object

Author(s)

Witold Wiecek; the visual style is based on bayesplot package

See Also

bayesplot::MCMC-intervals for more information about bayesplot functionality; forest_plot for
a typical meta-analysis alternative (which you can imitate using style = "forest_plot"); ef-
fect_plot for plotting treatment effects for a new group

12 baggr_theme_set

Examples

fit <- baggr(schools, pooling = "none")
plot(fit, hyper = "red")
plot(fit, style = "areas", order = FALSE)
plot(fit, style = "forest_plot", order = FALSE)

baggr_theme_set Set, get, and replace themes for baggr plots

Description

These functions get, set, and modify the ggplot2 themes of the baggr plots. baggr_theme_get()
returns a ggplot2 theme function for adding themes to a plot. baggr_theme_set() assigns a new
theme for all plots of baggr objects. baggr_theme_update() edits a specific theme element for the
current theme while holding the theme’s other aspects constant. baggr_theme_replace() is used
for wholesale replacing aspects of a plot’s theme (see ggplot2::theme_get()).

Usage

baggr_theme_set(new = bayesplot::theme_default())

baggr_theme_get()

baggr_theme_update(...)

baggr_theme_replace(...)

Arguments

new New theme to use for all baggr plots

... A named list of theme settings

Details

Under the hood, many of the visualizations rely on the bayesplot package, and thus these lever-
age the bayesplot::bayesplot_theme_get() functions. By default, these match the bayesplot’s
package theme to make it easier to form cohesive graphs across this package and others. The trick-
iest of these to use is baggr_theme_replace; 9 times out of 10 you want baggr_theme_update.

Value

The get method returns the current theme, but all of the others invisibly return the old theme.

See Also

bayesplot::bayesplot_theme_get

binary_to_individual 13

Examples

make plot look like default ggplots

library(ggplot2)

fit <- baggr(schools)
baggr_theme_set(theme_grey())
baggr_plot(fit)

use baggr_theme_get to return theme elements for current theme
qplot(mtcars$mpg) + baggr_theme_get()

update specific aspect of theme you are interested in
baggr_theme_update(text = element_text(family = "mono"))

undo that silliness
baggr_theme_update(text = element_text(family = "serif"))

update and replace are similar, but replace overwrites the
whole element, update just edits the aspect of the element
that you give it
this will error:
baggr_theme_replace(text = element_text(family = "Times"))
baggr_plot(fit)
because it deleted everything else to do with text elements

binary_to_individual Generate individual-level binary outcome data from an aggregate
statistics

Description

This is a helper function that is typically used automatically by some of baggr functions, such as
when running model="logit" in baggr, when summary-level data are supplied.

Usage

binary_to_individual(
data,
group = "group",
covariates = c(),
rename_group = TRUE

)

Arguments

data A data frame with columns a, c and b/n1, d/n2. (You can also use ai, ci, n1i,
n2i instead.)

14 bubble

group Column name storing group

covariates Column names in data that contain group-level variables to retain when expand-
ing into individual-level data.frame

rename_group If TRUE (default), this will rename the grouping variable to "group", making it
easier to work with baggr
See vignette("baggr_binary") for an example of use and notation details.

Value

A data frame with columns group, outcome and treatment.

See Also

prepare_ma uses this function

Examples

df_yusuf <- read.table(text="
trial a n1i c n2i
Balcon 14 56 15 58
Clausen 18 66 19 64
Multicentre 15 100 12 95
Barber 10 52 12 47
Norris 21 226 24 228
Kahler 3 38 6 31
Ledwich 2 20 3 20
", header=TRUE)

bti <- binary_to_individual(df_yusuf, group = "trial")
head(bti)
to go back to summary-level data
prepare_ma(bti, effect = "logOR")
the last operation is equivalent to simply doing
prepare_ma(df_yusuf, group="trial", effect="logOR")

bubble Bubble plots for meta-regression models

Description

Bubble plots for meta-regression models

Usage

bubble(bg, covariate, fit = TRUE, label = TRUE)

chicks 15

Arguments

bg a baggr() model using summary-level data, with covariates

covariate one of the covariates present in the model

fit logical: show mean model prediction? (slope is mean estimate of fixed_effects(),
intercept is hypermean()); if you have more than two groups and the covariate
is a factor, this will be ignored

label logical: label study/group names?

Value

A simple bubble plot in ggplot style. Dot sizes are proportional to inverse of variance of each study
(more precise studies are larger).

See Also

labbe() for an exploratory plot of binary data in similar style

chicks Chickens: impact of electromagnetic field on calcium ion efflux in
chicken brains

Description

An experiment conducted by Blackman et al. (1988) and documented in the following GitHub
repository by Vakar and Gelman. The dataset consists of a large number of experiments (tau,
se.tau) repeated at varying wave frequencies. Sham experiments (mu, se.mu) are also included,
allowing us to compare performance of models with and without control measurements.

Usage

chicks

Format

An object of class data.frame with 38 rows and 7 columns.

References

Blackman, C. F., S. G. Benane, D. J. Elliott, D. E. House, and M. M. Pollock. “Influence of
Electromagnetic Fields on the Efflux of Calcium Ions from Brain Tissue in Vitro: A Three-Model
Analysis Consistent with the Frequency Response up to 510 Hz.” Bioelectromagnetics 9, no. 3
(1988): 215–27.

https://github.com/VMatthijs/Slamming-the-sham
https://github.com/VMatthijs/Slamming-the-sham

16 convert_inputs

convert_inputs Convert inputs for baggr models

Description

Converts data to a list of inputs suitable for Stan models, checks integrity of data and suggests the
appropriate default model if needed. Typically all of this is done automatically by baggr, so this
function is included only for debugging or running (custom) models "by hand".

Usage

convert_inputs(
data,
model,
quantiles,
effect = NULL,
group = "group",
outcome = "outcome",
treatment = "treatment",
covariates = c(),
test_data = NULL,
silent = FALSE

)

Arguments

data ‘data.frame“ with desired modelling input

model valid model name used by baggr; see baggr for allowed models if model = NULL,
this function will try to find appropriate model automatically

quantiles vector of quantiles to use (only applicable if model = "quantiles")

effect Only matters for binary data, use logOR, logRR, or RD. Otherwise ignore. See
prepare_ma for details.

group name of the column with grouping variable

outcome name of column with outcome variable (designated as string)

treatment name of column with treatment variable

covariates Character vector with column names in data. The corresponding columns are
used as covariates (fixed effects) in the meta-regression model.

test_data same format as data argument, gets left aside for testing purposes (see baggr)

silent Whether to print messages when evaluated

Details

Typically this function is only called within baggr and you do not need to use it yourself. It can be
useful to understand inputs or to run models which you modified yourself.

data_spike 17

Value

R structure that’s appropriate for use by baggr Stan models; group_label, model, effect and
n_groups are included as attributes and are necessary for baggr to work correctly

Author(s)

Witold Wiecek

Examples

simple meta-analysis example,
this is the formatted input for Stan models in baggr():
convert_inputs(schools, "rubin")

data_spike Spike & slab example dataset

Description

Spike & slab example dataset

Usage

data_spike

Format

An object of class data.frame with 1500 rows and 4 columns.

effect_draw Make predictive draws from baggr model

Description

The function effect_draw and its alias, posterior_predict, take the sample of hyperparameters
from a baggr model (typically hypermean and hyper-SD, which you can see using treatment_effect)
and draws values of new realisations of treatment effect, i.e. an additional draw from the "population
of studies". This can be used for both prior and posterior draws, depending on baggr model. By
default this is done for a single new effect, but for meta-regression models you can specify values
of covariates with the newdata argument, same as in predict.

18 effect_draw

Usage

effect_draw(
object,
draws = NULL,
newdata = NULL,
transform = NULL,
summary = FALSE,
message = TRUE,
interval = 0.95

)

Arguments

object A baggr class object.

draws How many values to draw? The default is as long as the number of samples in
the baggr object (see Details).

newdata an optional data frame containing new values of covariates that were used when
fitting the baggr model

transform a transformation (an R function) to apply to the result of a draw.

summary logical; if TRUE returns summary statistics rather than samples from the distri-
bution;

message logical; use to disable messages prompted by using this function with no pooling
models

interval uncertainty interval width (numeric between 0 and 1), if summary=TRUE

Details

The predictive distribution can be used to "combine" heterogeneity between treatment effects and
uncertainty in the mean treatment effect. This is useful both in understanding impact of heterogene-
ity (see Riley et al, 2011, for a simple introduction) and for study design e.g. as priors in analysis
of future data (since the draws can be seen as an expected treatment effect in a hypothetical study).

The default number of samples is the same as what is returned by Stan model implemented in baggr,
(depending on such options as iter, chains, thin). If n is larger than what is available in Stan
model, we draw values with replacement. This is not recommended and warning is printed in these
cases.

Under default settings in baggr, a posterior predictive distribution is obtained. But effect_draw
can also be used for prior predictive distributions when setting ppd=T in baggr. The two outputs
work exactly the same way.

If the baggr model used by the function is a meta-regression (i.e. a baggr model with covariates),
by specifying the predicted values can be adjusted for known levels of fixed covariates by passing
newdata (same as in predict). If no adjustment is made, the returned value should be interpreted as
the effect when all covariates are 0.

effect_plot 19

Value

A vector (with draws values) for models with one treatment effect parameter, a matrix (draws rows
and same number of columns as number of parameters) otherwise. If newdata are specified, an
array is returned instead, where the first dimension corresponds to rows of newdata.

References

Riley, Richard D., Julian P. T. Higgins, and Jonathan J. Deeks. "Interpretation of Random Effects
Meta-Analyses". BMJ 342 (10 February 2011)..

See Also

treatment_effect returns samples from hypermean(s) and hyper-SD(s) which are used by this func-
tion

effect_plot Plot predictive draws from baggr model

Description

This function plots values from effect_draw, the predictive distribution (under default settings, pos-
terior predictive), for one or more baggr objects.

Usage

effect_plot(..., transform = NULL)

Arguments

... Object(s) of class baggr. If there is more than one, a comparison will be plotted
and names of objects will be used as a plot legend (see examples).

transform a transformation to apply to the result, should be an R function; (this is com-
monly used when calling group_effects from other plotting or printing func-
tions)

Details

Under default settings in baggr posterior predictive is obtained. But effect_plot can also be used
for prior predictive distributions when setting ppd=T in baggr. The two outputs work exactly the
same, but labels will change to indicate this difference.

Value

A ggplot object.

20 fixed_effects

See Also

effect_draw documents the process of drawing values; baggr_compare can be used as a shortcut for
effect_plot with argument compare = "effects"

Examples

A single effects plot
bg1 <- baggr(schools, prior_hypersd = uniform(0, 20))
effect_plot(bg1)

Compare how posterior depends on the prior choice
bg2 <- baggr(schools, prior_hypersd = normal(0, 5))
effect_plot("Uniform prior on SD"=bg1,

"Normal prior on SD"=bg2)

Compare the priors themselves (ppd=T)
bg1_ppd <- baggr(schools, prior_hypersd = uniform(0, 20), ppd=TRUE)
bg2_ppd <- baggr(schools, prior_hypersd = normal(0, 5), ppd=TRUE)
effect_plot("Uniform prior on SD"=bg1_ppd,

"Normal prior on SD"=bg2_ppd)

fixed_effects Effects of covariates on outcome in baggr models

Description

Effects of covariates on outcome in baggr models

Usage

fixed_effects(bg, summary = FALSE, transform = NULL, interval = 0.95)

Arguments

bg a baggr model

summary logical; if TRUE returns summary statistic instead of all MCMC samples

transform a transformation (R function) to apply to the result; (this is commonly used when
calling from other plotting or printing functions)

interval uncertainty interval width (numeric between 0 and 1), if summary=TRUE

Value

A list with 2 vectors (corresponding to MCMC samples) tau (mean effect) and sigma_tau (SD).
If summary=TRUE, both vectors are summarised as mean and lower/upper bounds according to
interval

forest_plot 21

See Also

treatment_effect for overall treatment effect across groups, group_effects for effects within each
group, effect_draw and effect_plot for predicted treatment effect in new group

forest_plot Draw a forest plot for a baggr model

Description

The forest plot functionality in baggr is a simple interface for calling the forestplot function. By
default the forest plot displays raw (unpooled) estimates for groups and the treatment effect estimate
underneath. This behaviour can be modified to display pooled group estimates.

Usage

forest_plot(
bg,
show = c("inputs", "posterior", "both", "covariates"),
print = show,
prob = 0.95,
digits = 3,
...

)

Arguments

bg a baggr class object
show if "inputs", then plotted points and lines correspond to raw inputs for each

group; if "posterior" – to posterior distribution; you can also plot "both"
inputs and posteriors; if "covariates", then fixed effect coefficients are plotted

print which values to print next to the plot: values of "inputs" or "posterior"
means? (if show="covariates", it must be "posterior")

prob width of the intervals (lines) for the plot
digits number of digits to display when printing out mean and SD in the plot
... other arguments passed to forestplot

See Also

forestplot function and its vignette for examples; effect_plot and baggr_plot for non-forest plots of
baggr results

Examples

bg <- baggr(schools, iter = 500)
forest_plot(bg)
forest_plot(bg, show = "posterior", print = "inputs", digits = 2)

22 group_effects

get_order Separate out ordering so we can test directly

Description

Separate out ordering so we can test directly

Usage

get_order(df_groups, hyper)

Arguments

df_groups data.frame of group effects used in plot.baggr_compare

hyper show parameter estimate? same as in plot.baggr_compare

Details

Given a set of effects measured by models, identifies the model which has the biggest range of
estimates and ranks groups by those estimates, returning the order

group_effects Extract baggr study/group effects

Description

Given a baggr object, returns the raw MCMC draws of the posterior for each group’s effect or a
summary of these draws. (We use "group" and "study" interchangeably.) If there are no covariates
in the model, this effect is a single random variable. If there are covariates, the group effect is a sum
of effect of covariates (fixed effects) and the study-specific random variable (random effects). This
is an internal function currently used as a helper for plotting and printing of results.

Usage

group_effects(
bg,
summary = FALSE,
transform = NULL,
interval = 0.95,
random_only = FALSE,
rename_int = FALSE

)

study_effects(
bg,

group_effects 23

summary = FALSE,
transform = NULL,
interval = 0.95,
random_only = FALSE,
rename_int = FALSE

)

Arguments

bg baggr object

summary logical; if TRUE returns summary statistics as explained below.

transform a transformation to apply to the result, should be an R function; (this is com-
monly used when calling group_effects from other plotting or printing func-
tions)

interval uncertainty interval width (numeric between 0 and 1), if summarising

random_only logical; for meta-regression models, should fixed_effects be included in the re-
turned group effect?

rename_int logical; if TRUE then rather than returning median, lci and uci columns they
are renamed to e.g. 50%, 2.5%, 97.5%; this only works if summary=TRUE

Details

If summary = TRUE, the returned object contains, for each study or group, the following 5 values:
the posterior medians, the lower and upper bounds of the uncertainty intervals using the central
posterior credible interval of width specified in the argument interval, the posterior mean, and the
posterior standard deviation.

Value

Either an array with MCMC samples (if summary = FALSE) or a summary of these samples (if
summary = TRUE). For arrays the three dimensions are: N samples, N groups and N effects (equal to
1 for the basic models).

See Also

fixed_effects for effects of covariates on outcome. To extract random effects when covariates are
present, you can use either random_effects or, equivalently, group_effects(random_only=TRUE).

Examples

fit1 <- baggr(schools)
group_effects(fit1, summary = TRUE, interval = 0.5)

24 labbe

is.baggr_cv Check if something is a baggr_cv object

Description

Check if something is a baggr_cv object

Usage

is.baggr_cv(x)

Arguments

x object to check

labbe L’Abbe plot for binary data

Description

This plot shows relationship between proportions of events in control and treatment groups in binary
data.

Usage

labbe(
data,
group = "group",
plot_model = FALSE,
labels = TRUE,
shade_se = c("rr", "or", "none")

)

Arguments

data a data frame with binary data (must have columns a, c, b/n1, d/n2)

group a character string specifying group names (e.g. study names), used for labels;

plot_model if TRUE, then odds ratios and risk ratios baggr models are estimated (using de-
fault settings) and their mean estimates of effects are plotted as lines

labels if TRUE, names from the group column are displayed

shade_se if "none", nothing is plotted, if "or" or "rr", a shaded area corresponding to
inverse of effect’s (OR or RR) SE is added to each data point; the default is "rr"

loocv 25

Value

A ggplot object

See Also

vignette("baggr_binary") for an illustrative example

loocv Leave one group out cross-validation for baggr models

Description

Performs exact leave-one-group-out cross-validation on a baggr model.

Usage

loocv(data, return_models = FALSE, ...)

Arguments

data Input data frame - same as for baggr function.

return_models logical; if FALSE, summary statistics will be returned and the models discarded;
if TRUE, a list of models will be returned alongside summaries

... Additional arguments passed to baggr.

Details

The values returned by loocv() can be used to understand how excluding any one group affects the
overall result, as well as how well the model predicts the omitted group. LOO-CV approaches are
a good general practice for comparing Bayesian models, not only in meta-analysis.

This function automatically runs K baggr models, where K is number of groups (e.g. studies),
leaving out one group at a time. For each run, it calculates expected log predictive density (ELPD)
for that group (see Gelman et al 2013). (In the logistic model, where the proportion in control group
is unknown, each of the groups is divided into data for controls, which is kept for estimation, and
data for treated units, which is not used for estimation but only for calculating predictive density.
This is akin to fixing the baseline risk and only trying to infer the odds ratio.)

The main output is the cross-validation information criterion, or -2 times the ELPD summed over
K models. (We sum the terms as we are working with logarithms.) This is related to, and often
approximated by, the Watanabe-Akaike Information Criterion. When comparing models, smaller
values mean a better fit. For more information on cross-validation see this overview article

For running more computation-intensive models, consider setting the mc.cores option before run-
ning loocv, e.g. options(mc.cores = 4) (by default baggr runs 4 MCMC chains in parallel). As a
default, rstan runs "silently" (refresh=0). To see sampling progress, please set e.g. loocv(data,
refresh = 500).

http://www.stat.columbia.edu/~gelman/research/published/waic_understand3.pdf

26 loo_compare

Value

log predictive density value, an object of class baggr_cv; full model, prior values and lpd of each
model are also returned. These can be examined by using attributes() function.

Author(s)

Witold Wiecek

References

Gelman, Andrew, Jessica Hwang, and Aki Vehtari. ’Understanding Predictive Information Criteria
for Bayesian Models.’ Statistics and Computing 24, no. 6 (November 2014): 997–1016.

See Also

loo_compare for comparison of many LOO CV results; you can print and plot output via plot.baggr_cv
and print.baggr_cv

Examples

Not run:
even simple examples may take a while
cv <- loocv(schools, pooling = "partial")
print(cv) # returns the lpd value
attributes(cv) # more information is included in the object

End(Not run)

loo_compare Compare LOO CV models

Description

Given multiple loocv outputs, calculate differences in their expected log predictive density.

Usage

loo_compare(...)

Arguments

... A series of baggr_cv objects passed as arguments, with a minimum of 2 argu-
ments required for comparison. baggr_cv objects can be created via the loocv
function. In instances where more than 2 arguments are passed, the first model
will be compared sequentially to all other provided models. Arguments can be
passed with names (see example below).

microcredit 27

Value

Returns a series of comparisons in order of the arguments provided as Model 1 - Model N for N
loocv objects provided. Model 1 corresponds to the first object passed and Model N corresponds to
the Nth object passed.

See Also

loocv for fitting LOO CV objects and explanation of the procedure; loo package by Vehtari et al
(available on CRAN) for a more comprehensive approach

Examples

Not run:
2 models with more/less informative priors -- this will take a while to run
cv_1 <- loocv(schools, model = "rubin", pooling = "partial")
cv_2 <- loocv(schools, model = "rubin", pooling = "partial",

prior_hypermean = normal(0, 5), prior_hypersd = cauchy(0,2.5))
loo_compare("Default prior"=cv_1,"Alternative prior"=cv_2)

End(Not run)

microcredit 7 studies on effect of microcredit supply

Description

This dataframe contains the data used in Meager (2019) to estimate hierarchical models on the data
from 7 randomized controlled trials of expanding access to microcredit.

Usage

microcredit

Format

A data frame with 40267 rows, 7 study identifiers and 7 outcomes

Details

The columns include the group indicator which gives the name of the lead author on each of the re-
spective studies, the value of the 6 outcome variables of most interest (consumer durables spending,
business expenditures, business profit, business revenues, temptation goods spending and consump-
tion spending) all of which are standardised to USD PPP in 2009 dollars per two weeks (these are
flow variables), and finally a treatment assignment status indicator.

The dataset has not otherwise been cleaned and therefore includes NAs and other issues common
to real-world datasets.

For more information on how and why these variables were chosen and standardised, see Meager
(2019) or consult the associated code repository which includes the standardisation scripts: link

https://bitbucket.org/rmeager/aggregate-average-impacts-microcredit/src/master/

28 microcredit_simplified

References

Meager, Rachael (2019) Understanding the average impact of microcredit expansions: A Bayesian
hierarchical analysis of seven randomized experiments. American Economic Journal: Applied Eco-
nomics, 11(1), 57-91.

microcredit_simplified

Simplified version of the microcredit dataset.

Description

This dataframe contains the data used in Meager (2019) to estimate hierarchical models on the data
from 7 randomized controlled trials of expanding access to microcredit.

Usage

microcredit_simplified

Format

A data frame with 14224 rows, 7 study identifiers and 1 outcome

Details

The columns include the group indicator which gives the name of the lead author on each of the
respective studies, the value of the household consumption spending standardised to USD PPP in
2009 dollars per two weeks (these are flow variables), and finally a treatment assignment status
indicator.

The dataset has not otherwise been cleaned and therefore includes NAs and other issues common
to real data.

For more information on how and why these variables were chosen and standardised, see Meager
(2019) or consult the associated code repository: link

This dataset includes only complete cases and only the consumption outcome variable.

References

Meager, Rachael (2019) Understanding the average impact of microcredit expansions: A Bayesian
hierarchical analysis of seven randomized experiments. American Economic Journal: Applied Eco-
nomics, 11(1), 57-91.

https://bitbucket.org/rmeager/aggregate-average-impacts-microcredit/src/master/

mint 29

mint "Mean and interval" function, including other summaries, calculated
for matrix (by column) or vector

Description

This function is just a convenient shorthand for getting typical summary statistics.

Usage

mint(y, int = 0.95, digits = NULL, median = FALSE, sd = FALSE)

Arguments

y matrix or a vector; for matrices, mint is done by-column

int probability interval (default is 95 percent) to calculate

digits number of significant digits to round values by.

median return median value?

sd return SD?

Examples

mint(rnorm(100, 12, 5))

mutau_cor Correlation between mu and tau in a baggr model

Description

Correlation between mu and tau in a baggr model

Usage

mutau_cor(bg, summary = FALSE, interval = 0.95)

Arguments

bg a baggr model where model = "mutau"

summary logical; if TRUE returns summary statistics as explained below.

interval uncertainty interval width (numeric between 0 and 1), if summarising

Value

a vector of values

30 plot.baggr_compare

plot.baggr Plotting method for baggr outputs

Description

Using generic plot() on baggr output invokes baggr_plot visual. See therein for customisation
options. Note that plot output is ggplot2 object.‘

Usage

S3 method for class 'baggr'
plot(x, ...)

Arguments

x object of class baggr

... optional arguments, see baggr_plot

Value

ggplot2 object from baggr_plot

Author(s)

Witold Wiecek

plot.baggr_compare Plot method for baggr_compare models

Description

Allows plots that compare multiple baggr models that were passed for comparison purposes to
baggr compare or run automatically by baggr_compare

Usage

S3 method for class 'baggr_compare'
plot(
x,
compare = x$compare,
style = "areas",
grid_models = FALSE,
grid_parameters = TRUE,
prob = x$prob,
hyper = TRUE,

plot.baggr_compare 31

transform = NULL,
order = F,
vline = FALSE,
add_values = FALSE,
values_digits = 2,
values_size = 4,
...

)

Arguments

x baggr_compare model to plot

compare When plotting, choose between comparison of "groups" (default), "hyperpars"
(to omit group-specific estimates) or (predicted) "effects". The "groups" op-
tion is not available when what = "prior".

style What kind of plot to display (if grid_models = TRUE), passed to the style ar-
gument in baggr_plot.

grid_models If FALSE (default), generate a single comparison plot; if TRUE, display each
model (using individual baggr_plot’s) side-by-side.

grid_parameters

if TRUE, uses ggplot-style facetting when plotting models with many parameters
(especially "quantiles", "sslab"); if FALSE, returns separate plot for each
parameter

prob Width of uncertainty interval (defaults to 95%)

hyper Whether to plot pooled treatment effect in addition to group treatment effects
when compare = "groups"

transform a function (e.g. exp(), log()) to apply to the values of group (and hyper, if hy-
per=TRUE) effects before plotting

order Whether to sort by median treatment effect by group. If yes, medians from the
model with largest range of estimates are used for sorting. If not, groups are
shown alphabetically.

vline logical; show vertical line through 0 in the plot?

add_values logical; if TRUE, values will be printed next to the plot, in a style that’s similar
to what is done for forest plots

values_digits number of significant digits to use when printing values,

values_size size of font for the values, if add_values == TRUE

... ignored for now, may be used in the future

32 plot_quantiles

plot.baggr_cv Plotting method for results of baggr LOO analyses

Description

Plotting method for results of baggr LOO analyses

Usage

S3 method for class 'baggr_cv'
plot(x, y, ..., add_values = TRUE)

Arguments

x output from loocv that has return_models = TRUE

y Unused, ignore

... Unused, ignore

add_values logical; if TRUE, values of elpd are printed next to each study

Value

ggplot2 plot in similar style to baggr_compare default plots

plot_quantiles plot quantiles

Description

Plot results for baggr quantile models. Displays results facetted per group. Results are ggplot2
plots and can be modified.

Usage

plot_quantiles(fit, ncol, hline = TRUE)

Arguments

fit an object of class baggr

ncol number of columns for the plot; defaults to half of number of groups

hline logical; plots a line through 0

Value

ggplot2 object

pooling 33

Examples

Not run:
bg <- baggr(microcredit_simplified, model = "quantiles",

quantiles = c(0.25, 0.50, 0.75),
iter = 1000, refresh = 0,
outcome = "consumption")

#vanilla plot
plot_quantiles(bg)[[1]]
plot_quantiles(bg, hline = TRUE)[[2]] +

ggplot2::coord_cartesian(ylim = c(-2, 5)) +
ggplot2::ggtitle("Works like a ggplot2 plot!")

End(Not run)

pooling Pooling metrics and related statistics for baggr

Description

Compute statistics relating to pooling in a given baggr meta-analysis model returns statistics,
for either the entire model or individual groups, such as pooling statistic by Gelman & Pardoe
(2006), I-squared, H-squared, or study weights; heterogeneity is a shorthand for pooling(type
= "total") weights is shorthand for pooling(metric = "weights")

Usage

pooling(
bg,
metric = c("pooling", "isq", "hsq", "weights"),
type = c("groups", "total"),
summary = TRUE

)

heterogeneity(
bg,
metric = c("pooling", "isq", "hsq", "weights"),
summary = TRUE

)

S3 method for class 'baggr'
weights(object, ...)

Arguments

bg a baggr model

34 pooling

metric "pooling" for Gelman & Pardoe statistic P, "isq" for I-squared statistic (1-P,
Higgins & Thompson, 2002) "hsq" for H squared statistic (1/P, ibid.); "weights"
for study weights; also see Details

type In pooling calculation is done for each of the "groups" (default) or for "total"
hypereffect(s).

summary logical; if FALSE a whole vector of pooling values is returned, otherwise only
the means and intervals

object baggr model for which to calculate group (study) weights

... Unused, please ignore.

Details

Pooling statistic (Gelman & Pardoe, 2006) describes the extent to which group-level estimates
of treatment effect are "pooled" toward average treatment effect in the meta-analysis model. If
pooling = "none" or "full" (which you specify when calling baggr), then the values are always
0 or 1, respectively. If pooling = "partial", the value is somewhere between 0 and 1. We can
distinguish between pooling of individual groups and overall pooling in the model.

In many contexts, i.e. medical statistics, it is typical to report 1-P, called I2 (see Higgins and
Thompson, 2002; sometimes another statistic, H2 = 1/P , is used). Higher values of I-squared
indicate higher heterogeneity; Von Hippel (2015) provides useful details for I-squared calculations
(and some issues related to it, especially in frequentist models). See Gelman & Pardoe (2006)
Section 1.1 for a short explanation of how R2 statistic relates to the pooling metric.

Group pooling

This is the calculation done by pooling() if type = "groups" (default). In a partial pooling model
(see baggr and above), group k (e.g. study) has standard error of treatment effect estimate, sek. The
treatment effect (across k groups) is variable across groups, with hyper-SD parameter σ(τ).

The quantity of interest is ratio of variation in treatment effects to the total variation. By convention,
we subtract it from 1, to obtain a pooling metric P.

p = 1− (σ(τ)
2/(σ(τ)

2 + se2k))

• If p < 0.5, the variation across studies is higher than variation within studies.

• Values close to 1 indicate nearly full pooling. Variation across studies dominates.

• Values close to 0 indicate no pooling. Variation within studies dominates.

Note that, since σ2
τ is a Bayesian parameter (rather than a single fixed value), P is also a parameter.

It is typical for P to have very high dispersion, as in many cases we cannot precisely estimate στ .
To obtain samples from the distribution of P (rather than summarised values), set summary=FALSE.

Study weights

Contributions of each group (e.g. each study) to the mean meta-analysis estimate can be calculated
by calculating for each study w_k the inverse of sum of group-specific SE squared and between-
study variation. To obtain weights, this vector (across all studies) has to be normalised to 1, i.e.
w_k/sum(w_k) for each k.

prepare_ma 35

SE is typically treated as a fixed quantity (and usually reported on the reported point estimate),
but between-study variance is a model parameter, hence the weights themselves are also random
variables.

Overall pooling in the model

Typically researchers want to report a single measure from the model, relating to heterogene-
ity across groups. This is calculated by either pooling(mymodel, type = "total") or simply
heterogeneity(mymodel)

Formulae for the calculations below are provided in main package vignette and almost analogous
to the group calculation above, but using mean variance across all studies. In other words, pooling
P is simply ratio of the expected within-study variance term to total variance.

The typical study variance is calculated following Eqn. (1) and (9) in Higgins and Thompson (see
References). We use this formulation to make our pooling and I^2 comparable with other meta-
analysis implementations, but users should be aware that this is only one possibility for calculating
that "typical" within-study variance.

Same as for group-specific estimates, P is a Bayesian parameter and its dispersion can be high.

Value

Matrix with mean and intervals for chosen pooling metric, each row corresponding to one meta-
analysis group.

References

Gelman, Andrew, and Iain Pardoe. "Bayesian Measures of Explained Variance and Pooling in
Multilevel (Hierarchical) Models." Technometrics 48, no. 2 (May 2006): 241-51.

Higgins, Julian P. T., and Simon G. Thompson. "Quantifying Heterogeneity in a Meta-Analysis."
Statistics in Medicine, vol. 21, no. 11, June 2002, pp. 1539-58.

Hippel, Paul T von. "The Heterogeneity Statistic I2 Can Be Biased in Small Meta-Analyses." BMC
Medical Research Methodology 15 (April 14, 2015).

prepare_ma Convert from individual to summary data in meta-analyses

Description

Allows for one-way conversion from full to summary data or for calculation of effects for binary
data. Usually used before calling baggr. Input must be pre-formatted appropriately.

36 prepare_ma

Usage

prepare_ma(
data,
effect = c("mean", "logOR", "logRR", "RD"),
rare_event_correction = 0.25,
correction_type = c("single", "all"),
log = FALSE,
cfb = FALSE,
summarise = TRUE,
treatment = "treatment",
baseline = NULL,
group = "group",
outcome = "outcome",
pooling = FALSE

)

Arguments

data either a data.frame of individual-level observations with columns for outcome
(numeric), treatment (values 0 and 1) and group (numeric, character or factor);
or, a data frame with binary data (must have columns a, c, b/n1, d/n2).

effect what effect to calculate? a mean (and SE) of outcome in groups or (for binary
data) logOR (odds ratio), logRR (risk ratio), RD (risk difference);

rare_event_correction

This correction is used when working with binary data (effect logOR or logRR)
The value of correction is added to all cells in either some or all rows (groups),
depending on correction_type. Using corrections may bias results but is the
only alternative to avoid infinite values.

correction_type

If "single" then rare event correction is only applied to the particular rows that
have 0 cells, if "all", then to all studies

log logical; log-transform the outcome variable?

cfb logical; calculate change from baseline? If yes, the outcome variable is taken as
a difference between values in outcome and baseline columns

summarise logical; TRUE by default, but you can disable it to obtain converted (e.g. logged)
data with columns renamed

treatment name of column with treatment variable

baseline name of column with baseline variable

group name of the column with grouping variable

outcome name of column with outcome variable

pooling Internal use only, please ignore

Details

The conversions done by this function are not typically needed and may happen automatically when
data is given to baggr. However, this function can be used to explicitly convert from full to reduced

prepare_ma 37

(summarised) data without analysing it in any model. It can be useful for examining your data and
generating summary tables.

If multiple operations are performed, they are taken in this order:

1. conversion to log scale,

2. calculating change from baseline,

3. summarising data (using appropriate effect)

Value

• If you summarise: a data.frame with columns for group, tau and se.tau (for effect =
"mean", also baseline means; for "logRR" or "logOR" also a, b, c, d, which correspond to
typical contingency table notation, that is: a = events in exposed; b = no events in exposed, c
= events in unexposed, d = no events in unexposed).

• If you do not summarise data, individual level data will be returned, but some columns may
be renamed or transformed (see the arguments above).

Author(s)

Witold Wiecek

See Also

convert_inputs for how any type of data is (internally) converted into a list of Stan inputs; vignette
baggr_binary for more details about rare event corrections

Examples

Example of working with binary outcomes data
Make up some individual-level data first:
df_rare <- data.frame(group = paste("Study", LETTERS[1:5]),

a = c(0, 2, 1, 3, 1), c = c(2, 2, 3, 3, 5),
n1i = c(120, 300, 110, 250, 95),
n2i = c(120, 300, 110, 250, 95))

df_rare_ind <- binary_to_individual(df_rare)
Calculate ORs; default rare event correction will be applied
prepare_ma(df_rare_ind, effect = "logOR")
Add 0.5 to all rows
prepare_ma(df_rare_ind, effect = "logOR",

correction_type = "all",
rare_event_correction = 0.5)

38 prepare_prior

prepare_prior Prepare prior values for Stan models in baggr

Description

This is an internal function called by baggr. You can use it for debugging or to run modified models.
It extracts and prepares priors passed by the user. Then, if any necessary priors are missing, it sets
them automatically and notifies user about these automatic choices.

Usage

prepare_prior(
prior,
data,
stan_data,
model,
pooling,
covariates,
quantiles = c(),
silent = FALSE

)

Arguments

prior prior argument passed from baggr call

data data another argument in baggr

stan_data list of inputs that will be used by sampler this is already pre-obtained through
convert_inputs

model same as in baggr

pooling same as in baggr

covariates same as in baggr

quantiles same as in baggr

silent same as in baggr

Value

A named list with prior values that can be appended to stan_data and passed to a Stan model.

print.baggr 39

print.baggr S3 print method for objects of class baggr (model fits)

Description

This prints a concise summary of the main baggr model features. More info is included in the
summary of the model and its attributes.

Usage

S3 method for class 'baggr'
print(x, exponent = FALSE, digits = 2, prob = 0.95, group, fixed = TRUE, ...)

Arguments

x object of class baggr

exponent if TRUE, results (for means) are converted to exp scale

digits Number of significant digits to print.

prob Width of uncertainty interval (defaults to 95%)

group logical; print group effects? If unspecified, they are printed only if less than 20
groups are present

fixed logical: print fixed effects?

... currently unused by this package: further arguments passed to or from other
methods (print requirement)

print.baggr_compare Print method for baggr_compare models

Description

Print method for baggr_compare models

Usage

S3 method for class 'baggr_compare'
print(x, digits, ...)

Arguments

x baggr_compare model

digits number of significant digits for effect estimates

... other parameters passed to print

40 print.compare_baggr_cv

print.baggr_cv Print baggr cv objects nicely

Description

Print baggr cv objects nicely

Usage

S3 method for class 'baggr_cv'
print(x, digits = 3, ...)

Arguments

x baggr_cv object obtained from loocv to print

digits number of digits to print

... Unused, ignore

print.compare_baggr_cv

Print baggr_cv comparisons

Description

Print baggr_cv comparisons

Usage

S3 method for class 'compare_baggr_cv'
print(x, digits = 3, ...)

Arguments

x baggr_cv comparison to print

digits number of digits to print

... additional arguments for s3 consistency

print_dist 41

print_dist Output a distribution as a string

Description

Used for printing nicely formatted outputs when reporting results etc.

Usage

print_dist(dist)

Arguments

dist distribution name, one of priors

Value

Character string like normal(0, 10^2).

priors Prior distributions in baggr

Description

This page provides a list of all available distributions that can be used to specify priors in baggr().
These convenience functions are designed to allow the user to write the priors in the most "natural"
way when implementing them in baggr. Apart from passing on the arguments, their only other role
is to perform a rudimentary check if the distribution is specified correctly.

Usage

multinormal(location, Sigma)

lkj(shape, order = NULL)

normal(location, scale)

lognormal(mu, sigma)

student_t(nu, mu, sigma)

cauchy(location, scale)

uniform(lower, upper)

42 priors

Arguments

location Mean for normal and multivariate normal (in which case location is a vector),
and median for Cauchy distributions

Sigma Variance-covariance matrix for multivariate normal.

shape Shape parameter for LKJ

order Order of LKJ matrix (typically it does not need to be specified, as it is inferred
directly in the model)

scale SD for Normal, scale for Cauchy

mu mean of ln(X) for lognormal or location for Student’s generalised T

sigma SD of ln(X) for lognormal or scale for Student’s generalised T

nu degrees of freedom for Student’s generalised T

lower Lower bound for Uniform

upper Upper bound for Uniform

Details

The prior choice in baggr is done via distinct arguments for each type of prior, e.g. prior_hypermean,
or a named list of several passed to prior. See the examples below.

Notation for priors is "plain-text", in that you can write the distributions as normal(5,10), uniform(0,100)
etc.

Different parameters admit different priors (see baggr for explanations of what the different prior_
arguments do):

• prior_hypermean, prior_control, and prior_beta will take "normal", "uniform", "lognormal",
and "cauchy" input for scalars. For a vector hypermean (see "mutau" model), it will take any
of these arguments and apply them independently to each component of the vector, or it can
also take a "multinormal" argument (see the example below).

• prior_hypersd, prior_control_sd, and prior_sigma will take "normal", "uniform", and
"lognormal" but negative parts of the distribution are truncated

• prior_hypercor allows "lkj" input (see Lewandowski et al.)

Author(s)

Witold Wiecek, Rachael Meager

References

Lewandowski, Daniel, Dorota Kurowicka, and Harry Joe. "Generating Random Correlation Ma-
trices Based on Vines and Extended Onion Method." Journal of Multivariate Analysis 100, no. 9
(October 1, 2009): 1989-2001.

random_effects 43

Examples

(these are not the recommended priors -- for syntax illustration only)

change the priors for 8 schools:
baggr(schools, model = "rubin", pooling = "partial",

prior_hypermean = normal(5,5),
prior_hypersd = normal(0,20))

passing priors as a list
custom_priors <- list(hypercor = lkj(1), hypersd = normal(0,10),

hypermean = multinormal(c(0,0),matrix(c(10,3,3,10),2,2)))
microcredit_summary_data <- prepare_ma(microcredit, outcome = "consumption")
baggr(microcredit_summary_data, model = "mutau",

pooling = "partial", prior = custom_priors)

random_effects Extract only random effects from a baggr model

Description

This function is a shortcut for group_effects(random_only=TRUE, ...)

Usage

random_effects(...)

Arguments

... arguments passed to group_effects

schools 8 schools example

Description

A classic example of aggregate level continuous data in Bayesian hierarchical modelling. This
dataframe contains a column of estimated treatment effects of an SAT prep program implemented
in 8 different schools in the US, and a column of estimated standard errors.

Usage

schools

44 single_comp_plot

Format

An object of class data.frame with 8 rows and 3 columns.

Details

See Gelman et al (1995), Chapter 5, for context and applied example.

References

Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis.
Taylor & Francis, 1995.

set_prior_val Add prior values to Stan input for baggr

Description

Add prior values to Stan input for baggr

Usage

set_prior_val(target, name, prior, p = 1)

Arguments

target list object (Stan input) to which prior will be added

name prior name, like hypermean, hypersd, hypercor

prior one of prior distributions allowed by baggr like normal

p number of repeats of the prior, i.e. when P i.i.d. priors are set for P dimensional
parameter as in "mu & tau" type of model

single_comp_plot Plot single comparison ggplot in baggr_compare style

Description

Plot single comparison ggplot in baggr_compare style

treatment_effect 45

Usage

single_comp_plot(
df,
title = "",
legend = "top",
ylab = "",
grid = F,
points = FALSE,
add_values = FALSE,
values_digits = 1,
values_size = 4

)

Arguments

df data.frame with columns group, median, lci, uci, model (character or factor
listing compared models) and, optionally, parameter (character or factor with
name of parameter)

title ggtitle argument passed to ggplot

legend legend.position argument passed to ggplot

ylab Y axis label

grid logical; if TRUE, facets the plot by values in the parameter column

points you can optionally specify a (numeric) column that has values of points to be
plotted next to intervals

add_values logical; if TRUE, values will be printed next to the plot, in a style that’s similar to
what is done for forest plots

values_digits number of significant digits to use when printing values,

values_size size of font for the values, if add_values == TRUE

Value

a ggplot2 object

treatment_effect Average treatment effects in a baggr model

Description

The most general treatment_effect displays both hypermean and hyperSD (as a list of length 2),
whereas hypermean and hypersd can be used as shorthands.

46 yusuf

Usage

treatment_effect(
bg,
summary = FALSE,
transform = NULL,
interval = 0.95,
message = TRUE

)

hypermean(
bg,
transform = NULL,
interval = 0.95,
message = FALSE,
summary = TRUE

)

hypersd(bg, transform = NULL, interval = 0.95, message = FALSE, summary = TRUE)

Arguments

bg a baggr model

summary logical; if TRUE returns summary statistics as explained below.

transform a transformation to apply to the result, should be an R function; (this is com-
monly used when calling treatment_effect from other plotting or printing
functions)

interval uncertainty interval width (numeric between 0 and 1), if summarising

message logical; use to disable messages prompted by using with no pooling models

Functions

• treatment_effect(): A list with 2 vectors (corresponding to MCMC samples) tau (mean
effect) and sigma_tau (SD). If summary=TRUE, both vectors are summarised as mean and
lower/upper bounds according to interval

• hypermean(): The hypermean of a baggr model, shorthand for treatment_effect(x, s=T)[[1]]

• hypersd(): The hyper-SD of a baggr model, shorthand for treatment_effect(x, s=T)[[2]]

yusuf Yusuf et al: beta-blockers and heart attacks

Description

This replicates Table 6 from the famous Yusuf et al. (1985), removing one trial (Snow) that had NA
observations only. The paper is notable for application of rare-event corrections, which we discuss
more in package vignette baggr_binary.

yusuf 47

Usage

yusuf

Format

An object of class data.frame with 21 rows and 5 columns.

References

Yusuf, S., Peto, R., Lewis, J., Collins, R., & Sleight, P. (1985). Beta blockade during and after
myocardial infarction: An overview of the randomized trials. Progress in Cardiovascular Disease,
27(5), 335–371.

Index

∗ datasets
chicks, 15
data_spike, 17
microcredit, 27
microcredit_simplified, 28
schools, 43
yusuf, 46

add_color_to_plot, 3

baggr, 3, 4, 8, 9, 13, 14, 16–21, 24, 25, 29,
33–36, 38, 39, 42, 46

baggr(), 15, 41
baggr-package, 3, 4
baggr_compare, 5, 7, 8, 20, 32
baggr_plot, 7, 10, 21, 30, 31
baggr_theme_get (baggr_theme_set), 12
baggr_theme_replace (baggr_theme_set),

12
baggr_theme_set, 12
baggr_theme_update (baggr_theme_set), 12
bayesplot::bayesplot_theme_get, 12
bayesplot::bayesplot_theme_get(), 12
bayesplot::MCMC-intervals, 11
binary_to_individual, 13
bubble, 14

cauchy (priors), 41
chicks, 15
convert_inputs, 16, 37, 38

data_spike, 17

effect_draw, 7, 17, 19–21
effect_plot, 7, 11, 19, 21

fixed_effects, 7, 20, 23
fixed_effects(), 15
forest_plot, 11, 21
forestplot, 21

get_order, 22
ggplot2::theme_get(), 12
group_effects, 7, 19, 21, 22, 43

heterogeneity (pooling), 33
hypermean (treatment_effect), 45
hypermean(), 15
hypersd (treatment_effect), 45

is.baggr_cv, 24

labbe, 24
labbe(), 15
lkj (priors), 41
lognormal (priors), 41
loo_compare, 26, 26
loocv, 7, 25, 26, 27, 32, 40

microcredit, 27
microcredit_simplified, 28
mint, 29
multinormal (priors), 41
mutau_cor, 29

normal, 44
normal (priors), 41

plot.baggr, 30
plot.baggr_compare, 9, 22, 30
plot.baggr_cv, 26, 32
plot_quantiles, 32
pooling, 33
predict, 17, 18
prepare_ma, 6, 14, 16, 35
prepare_prior, 38
print.baggr, 39
print.baggr_compare, 9, 39
print.baggr_cv, 26, 40
print.compare_baggr_cv, 40
print_dist, 41
priors, 41, 41

48

INDEX 49

random_effects, 23, 43
round, 29

schools, 43
set_prior_val, 44
single_comp_plot, 44
student_t (priors), 41
study_effects, 7
study_effects (group_effects), 22

treatment_effect, 7, 17, 19, 21, 45

uniform (priors), 41

weights.baggr (pooling), 33

yusuf, 46

	baggr-package
	add_color_to_plot
	baggr
	baggr_compare
	baggr_plot
	baggr_theme_set
	binary_to_individual
	bubble
	chicks
	convert_inputs
	data_spike
	effect_draw
	effect_plot
	fixed_effects
	forest_plot
	get_order
	group_effects
	is.baggr_cv
	labbe
	loocv
	loo_compare
	microcredit
	microcredit_simplified
	mint
	mutau_cor
	plot.baggr
	plot.baggr_compare
	plot.baggr_cv
	plot_quantiles
	pooling
	prepare_ma
	prepare_prior
	print.baggr
	print.baggr_compare
	print.baggr_cv
	print.compare_baggr_cv
	print_dist
	priors
	random_effects
	schools
	set_prior_val
	single_comp_plot
	treatment_effect
	yusuf
	Index

